

Installation Instructions and Specifications

APx515 B Series audio analyzer

Installation Instructions and Specifications

B Series APx515

December, 2018

Copyright © 2011–2018 Audio Precision, Inc. All rights reserved. Printed in the United States of America.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.

Audio Precision, AP, and APx are trademarks of Audio Precision, Inc. Windows[™] is a trademark of Microsoft Corporation. Dolby and the double-D symbol are trademarks of Dolby Laboratories, Inc. DTS is a trademark of DTS, Inc.

Audio Precision 5750 SW Arctic Drive Beaverton, Oregon 97005 503-627-0832 800-231-7350 ap.com

Documentation and Support

This booklet contains safety information, installation instructions and full specifications for the Audio Precision APx515 audio analyzer.

The APx500 User's Manual

Detailed information on the operation of the APx515 analyzer is available from the embedded Help installed with the APx500 measurement software, and in the APx500 User's Manual. The user's manual is available as a PDF on the APx500 Application Disc and on the Web at ap.com; a hard-copy version can be ordered from Audio Precision or your local distributor.

Audio Test Discs

These discs and more can be ordered from Audio Precision or your local distributor.

- APx-DVD1 is a playable video DVD with menu-driven linear and coded audio test signals for external source use with DVD players.
- APx-CD1 is a playable audio CD with linear audio test signals for external source use with CD players.

ap.com

Visit the Audio Precision Web site at ap.com for APx support information. APx resources are available at ap.com. You can also contact our Technical Support staff at techsupport@ap.com, or by telephoning 503-627-0832 ext. 4, or 800-231-7350 ext. 4 (toll free in the U.S.A.).

Table of Contents

Safety														 														i
Sécurité .														 														. iii
Seguridad														 														. vii
Installation														 														. 1
Installation	(Fr)													 														. 7
Instalación	(Sp)).												 														. 15
Abbreviatio	ns,	Ter	ms	an	d S	Syr	nb	ols	S.					 														. 23
APx515 B S	Serie	es s	spe	cifi	cat	tior	าร							 														. 25

Safety

Safety Information

Do NOT service or repair this equipment unless properly qualified. Servicing should be performed only by a qualified technician or an authorized Audio Precision distributor.

Do NOT defeat the safety ground connection. This equipment is designed to operate only with an approved threeconductor power cord and safety grounding. Loss of the protective grounding connection can result in electrical shock hazard from the accessible conductive surfaces of this equipment.

Do NOT exceed mains voltage ratings. This equipment is designed to operate only from a 50–60 Hz ac mains power source at 100–240 Vac nominal voltage. The mains supply voltage is not to exceed ± 10 % of nominal (90–264 Vac).

For continued fire hazard protection, fuses should be replaced ONLY with the exact value and type indicated on the rear panel of the instrument and discussed on page 5 of this booklet.

The International Electrotechnical Commission (IEC 1010-1) requires that measuring circuit terminals used for voltage or current measurement be marked to indicate their Measurement Category. The Measurement Category is based on the amplitude of transient or impulse voltage that can be expected from the AC power distribution network. This product is classified as Measurement Category I, abbreviated "CAT I" on the instrument front panel. This product should not be used within Categories II, III, or IV. The APx515 measurement terminals are rated for a maximum input of 125 Vpk, 88 Vrms and are intended to be used for the measurement of audio signals only. Do NOT substitute parts or make any modifications without the written approval of Audio Precision. Doing so may create safety hazards. Using this product in a manner not specified by Audio Precision can result in a safety hazard.

This product is for indoor use—Installation Category II, Measurement Category I, pollution degree 2.

To clean the enclosure of this product, use a soft cloth or brush to remove accumulated dust. A mild detergent may be used to remove remaining dirt or stains. Do not use strong or abrasive cleaners. Wipe all surfaces with a damp cloth.

This unit is supplied with four feet on the bottom surface and four feet on the right side surface. The unit should only be operated while resting on the bottom surface feet. The feet on the right side are provided for convenience and stability when transporting the unit. DO NOT operate the unit while it is sitting on the side feet.

Safety Symbols

The following symbols may be marked on the panels or covers of equipment or modules, and are used in this manual:

WARNING!—This symbol alerts you to a potentially hazardous condition, such as the presence of dangerous voltage that could pose a risk of electrical shock. Refer to the accompanying Warning Label or Tag, and exercise extreme caution.

ATTENTION!—This symbol alerts you to important operating considerations or a potential operating condition that could damage equipment. If you see this marked on equipment, refer to the Operator's Manual or User's Manual for precautionary instructions.

FUNCTIONAL EARTH TERMINAL—A terminal marked with this symbol is electrically connected to a reference point of a measuring circuit or output and is intended to be earthed for any functional purpose other than safety.

PROTECTIVE EARTH TERMINAL—A terminal marked with this symbol is bonded to conductive parts of the instrument and is intended to be connected to an external protective earthing system.

Disclaimer

Audio Precision cautions against using their products in a manner not specified by the manufacturer. To do otherwise may void any warranties, damage equipment, or pose a safety risk to personnel.

Sécurité

Consignes de sécurité

Ne procédez PAS à l'entretien ou à la réparation de cet équipement à moins d'être dûment qualifié(e) pour le faire. L'entretien devrait être effectué uniquement par un technicien qualifié ou un distributeur Audio Precision agréé.

Ne PAS dérouter le branchement de la mise à la terre de sécurité. Cet équipement est conçu pour être utilisé uniquement avec un cordon d'alimentation approuvé avec connecteur à trois conducteurs et mise à la terre de sécurité. La perte de connexion à la mise à la terre protectrice peut entraîner un risque de choc électrique à partir des surfaces conductrices accessibles de cet équipement.

Ne PAS dépasser la tension de réseau nominale. Cet équipement est conçu pour fonctionner uniquement à partir d'une source d'alimentation réseau de 50–60 Hz CA, à une tension nominale de 100–240 V CA. La tension d'alimentation du réseau ne doit pas dépasser ± 10 % de la tension nominale (90–264 V CA).

Pour obtenir en permanence la protection contre les risques d'incendie, les fusibles doivent être remplacés UNIQUE-MENT par des fusibles de même valeur et type, comme indiqué sur le panneau arrière de l'instrument et précisé à la page 12 de ce livret.

La International Electrotechnical Commission (la Commission électrotechnique internationale) (CEI 1010-1) exige que les bornes des circuits de mesure utilisées pour la mesure de la tension ou du courant identifient leur catégorie de mesure. La catégorie de mesure se base sur l'amplitude de la tension transitoire ou de la tension d'impulsion à laquelle on peut s'attendre d'un réseau de distribution d'alimentation électrique CA. Ce produit est classé dans la catégorie de mesure I, selon l'abréviation « CAT I » inscrite sur le panneau avant de l'instrument. Ce produit ne devrait pas être utilisé dans les catégories II, III ou IV. Les bornes de mesure du module d'entrée sont classées selon une tension maximale de crête de 125 V à la terre, et une entrée de signal de 88 V RMS non équilibrés, et de 115 V RMS équilibrés. Ces bornes sont destinées à la mesure des signaux audio seulement.

Ne PAS remplacer de pièces ou effectuer de modifications sans l'approbation écrite d'Audio Precision. Si c'est le cas, il pourrait y avoir des risques pour la sécurité. Utiliser ce produit d'une manière non précisée par Audio Precision peut entraîner un risque pour la sécurité.

Ce produit est destiné à une utilisation à l'intérieur-Catégorie d'installation II, Catégorie de mesure I, degré de pollution 2.

Pour nettoyer le boîtier de ce produit, utiliser un chiffon doux ou une brosse douce permettant d'éliminer la saleté accumulée. Un détergent doux peut être utilisé pour éliminer la saleté ou les taches. Ne pas utiliser de produits nettoyants forts ou abrasifs. Essuyer toutes les surfaces à l'aide d'un chiffon humide.

Cette unité est fournie avec quatre pattes sur le dessous et quatre pattes sur le côté droit. L'unité doit être utilisée uniquement lorsqu'elle repose sur les pattes du dessous. Les pattes sur le côté droit sont installées pour plus de commodité et de stabilité lors du transport. NE PAS utiliser l'unité lorsqu'elle repose sur les pattes du côté

Symboles de sécurité

Les symboles suivants peuvent être présents sur les panneaux ou les couvercles de l'équipement ou des modules, et sont utilisés dans le présent manuel:

AVERTISSEMENT!—Ce symbole vous informe d'une situation potentiellement dangereuse, par exemple, la présence d'une tension dangereuse qui pourrait présenter un risque de choc électrique. Consultez l'autocollant ou l'étiquette d'avertissement qui l'accompagne, et faites preuve d'une grande prudence.

ATTENTION!—Ce symbole vous informe d'importantes considérations liées au fonctionnement ou d'une condition d'utilisation potentielle qui pourrait endommager l'équipement. Si vous voyez ce symbole sur l'équipement, consultez le manuel de l'opérateur ou le manuel de l'utilisateur pour connaître les instructions préventives.

BORNE DE TERRE FONCTIONNELLE— Les bornes identifiées à l'aide de ce symbole sont reliées électriquement à un point de référence d'un circuit ou d'une sortie de mesure et doivent être raccordées à la terre (mise à la terre) pour toute fonction utilitaire autre que la sécurité.

BORNE DE TERRE DE PROTECTION—Les bornes identifiées à l'aide de ce symbole sont liées à des pièces conductrices de l'instrument et elles doivent être raccordées à un système protecteur de mise à la terre externe.

Avis de non-responsabilité

Audio Precision déconseille fortement l'utilisation de ses produits d'une manière non spécifiée par le fabricant. Une telle utilisation pourrait annuler toute garantie, endommager l'équipement ou présenter un risque de sécurité pour le personnel. Sécurité

Seguridad

Información de seguridad

NO proporcione servicio o reparación a este equipo a menos que esté debidamente calificado. El trabajo de servicio deberá ser efectuado solamente por un técnico calificado o un distribuidor autorizado de Audio Precision.

NO modifique la conexión de seguridad a tierra. Este equipo está diseñado para operar solamente con una extensión aprobada de tres conductores puestos a tierra de seguridad. La pérdida de conexión de protección a tierra puede dar como resultado un peligro de descarga eléctrica al tocar las superficies conductoras accesibles de este equipo.

NO exceder las clasificaciones de la tensión de red eléctrica. Este equipo está diseñado para operar solamente de una fuente de suministro eléctrico de 50–60 Hz de corriente alterna a una tensión nominal de 100–240 VCA. La fuente de suministro de voltaje no debe exceder del ± 10 % del nominal (90–264 VCA).

Para protección continua contra riesgo de incendio, los fusibles deberán reemplazarse SOLAMENTE con fusibles de valor y tipo exactos indicados en el panel posterior del instrumento y que se explica en la página 20 de este folleto.

International Electrotechnical Commission [La Comisión Electrotécnica Internacional] (IEC 1010-1) requiere que los terminales del circuito de medición que se utilizan solamente para medición de voltaje o corriente se marquen para indicar la categoría de medición. La categoría de medición se basa en la amplitud del voltaje transitorio o de impulso que se puede esperar de la red de distribución de voltaje de CA. Este producto se clasifica como Medición de Categoría I, abreviado como "CAT I" en el panel frontal del instrumento. Este producto no deberá usarse dentro de las categorías II, III, o IV. Los terminales de medición del módulo de entrada tienen una capacidad para un voltaje máximo de 125 Vpk a tierra, y una entrada de señal de 88 Vrms no balanceada, 115 Vrms balanceada. Estos terminales están concebidos para usarse solamente para la medición de señales de audio.

NO reemplace partes ni haga modificaciones sin la aprobación por escrito de Audio Precision. Hacerlo podría causar riesgos de seguridad. El uso de este producto en una manera no especificada por Audio Precision puede resultar en un riesgo de seguridad.

Este producto es para uso en interiores-Categoría de instalación II, Categoría de medición I, grado de contaminación 2.

Para limpiar la caja de este producto, utilice un trapo o cepillo suave para remover el polvo acumulado. Se puede utilizar un detergente neutro para remover la suciedad o manchas remanentes. No utilice limpiadores fuertes o abrasivos. Limpie todas las superficies con un trapo húmedo.

Esta unidad se suministra con cuatro patas en la superficie inferior y cuatro patas en la superficie del costado derecho. La unidad solamente debe operarse al estar apoyada en las patas de la superficie inferior. Las patas en el costado derecho se proporcionan para conveniencia y estabilidad al transportar la unidad. NO opere la unidad al estar apoyada sobre las patas laterales.

Símbolos de seguridad

Los siguientes símbolos podrían estar marcados en los paneles o cubiertas del equipo o los módulos, y se utilizan en este manual:

¡ADVERTENCIA!—Este símbolo le alerta sobre una condición potencialmente peligrosa, tal como la presencia de voltaje peligroso que pudiera representar un riesgo de descarga eléctrica. Consulte la etiqueta de advertencia adjunta y tenga mucha precaución.

¡ATENCIÓN!—Este símbolo le alerta de consideraciones operativas importantes o de una condición operativa potencial que pudiera dañar al equipo. Si usted ve este símbolo en el equipo, consulte el Manual del operador o el Manual del usuario para instrucciones de precaución.

TERMINAL DE TIERRA FUNCIONAL—Un terminal marcado con este símbolo está conectado eléctricamente a un punto de referencia de un circuito de medición o salida y se supone está conectado a tierra (aterrizado) para algún fin funcional diferente a la seguridad.

TERMINAL DE TIERRA DE PROTECCIÓN—Un terminal marcado con este símbolo está enlazado a partes conductores del instrumento y se supone que está conectado a un sistema externo de protección a tierra (aterrizada).

Exención de responsabilidad

Audio Precision advierte contra el uso de este producto de una manera no especificada por el fabricante. El hecho de no hacerlo de la manera indicada invalidaría las garantías, causaría daño al equipo, o representaría un riesgo de seguridad para el personal. Seguridad

Installation

Software

The APx515 audio analyzer system uses the award-winning APx500 measurement software. This is the same software used in the APx52x, 555 and APx58x analyzer families.

APx "B Series" analyzers

All analyzers shipped in late December 2018 (or afterward) have a new embedded processor and enhanced security provisions. These analyzers are designated "B Series" and carry "B Series" nomenclature. "B Series" APx analyzers do not require an APx KeyBox (see below), but may require authorization codes to enable APx500 software or software options.

The APx KeyBox

If you are using APx500 software version 4.6 or later with an earlier APx analyzer (non "B Series"), you must attach an authenticated APx KeyBox to the Software Options connector on the analyzer rear panel.

The APx KeyBox must be programmed with your analyzer's serial number at the Audio Precision factory, and cannot be used with any other APx analyzer. You may require authorization codes to enable APx500 software or software options.

Note that without a properly authenticated APx KeyBox attached, APx500 version 4.6 or later will only run in demo mode. If you need a KeyBox, locate your analyzer serial number and go to https://ap.com/get-keybox/ to complete the order form. The APx KeyBox is provided at no cost, free of charge.

Analyzer serial numbers are located on the configuration label on the analyzer rear panel, and on the calibration label on the forward edge of the top panel.

PC system requirements

The APx500 measurement software version 4.1 and later can be very demanding of the personal computer (PC) running the APx software.

Moderate measurement demands

Moderate measurement demands (measurement bandwidths under 90 kHz, channel counts of 2 or 1) will perform adequately using a PC with these minimum specifications. Measurement demands of the APx515 typically fall within this moderate range:

- Operating system: Microsoft Windows 10 (64-bit), Windows 8 (64-bit), or Windows 7 (64-bit).
- A multi-core processor (at least dual-core) running at a clock speed of at least 2 GHz. Most current processors from Intel and AMD meet these requirements.

Note: the Intel Atom processor does not meet our minimum specification.

- At least 2 GB of RAM.
- At least 300 MB of free hard disk space.
- A CD-ROM optical disc drive.
- A USB 2.0 port; two are required for optional switcher or DCX-127 use.
- A color monitor and a video card with at least VGA capabilities. Video resolution of 1024 x 768 or greater is recommended.

To learn more, view the current APx PC Minimum System Solutions document on our Web site at www.ap.com. This

information will help you to determine the adequacy of a particular PC for APx use.

Installation

To install the measurement software, insert the APx500 CD-ROM into the optical drive on the PC and follow the instructions in the installation dialog.

NOTE: You must have local administrator rights to install APx500 software. Go to User Accounts in the Windows Control Panel, or check with your network administrator.

Running the software without instrument hardware attached

NOTE: You must have standard user rights or administrator rights to operate APx500 software. Guest users are not supported.

You can launch the APx500 software without instrument hardware attached. When no hardware is detected, APx500 will present you with the following dialog box:

Select "Demo Mode." APx500 will run in demo mode, which allows you to explore the user interface but does not enable any measurement functions. Input data shown in Demo Mode is false data, generated for display only. From the Instrument Type menu, select an instrument to be emulated in Demo Mode.

Running the software with instrument hardware attached

NOTE: You must have standard user rights or administrator rights to operate APx500 software. Guest users are not supported.

Connecting the instrument to your PC

Before connecting your APx515 instrument to your PC, install the APx500 measurement software as described above. Connecting the instrument prior to software installation may cause Windows to select an incorrect USB driver for the instrument.

USB driver selection

The measurement software communicates with the APx515 using a USB 2.0 interconnection. Once the software is successfully installed, connect one end of the USB cable to a USB 2.0 port on the PC, and the other end to the PC INTERFACE port on the rear of the APx515. We strongly recommend that you use the USB cable included with your instrument (AP part number CAB-APSI). We have tested other USB cables that perform poorly.

Note: Some PCs have optional USB ports on the front of the PC, or on extension brackets on the rear. In many cases these convenience ports have compromised performance due to the extra cable length within the PC. We recommend using USB ports directly connected to the PC motherboard, typically at the rear of the PC.

Connect the APx515 mains power cord to the instrument and to a source of ac mains power. See **Connecting your** **instrument to the electrical mains supply** below for more information about mains connections.

Turn the instrument on by rocking the mains power switch up to **ON** (|). The mains power switch is located in the power entry module on the rear of the APx515. Windows will detect the presence of the APx515 on the USB port and will open the Hardware Update Wizard to search for the correct software driver. Select "Install the software automatically." Windows will find the Audio Precision driver software installed with APx500 and connect to the APx515.

Launch APx500 by double-clicking on the installed shortcut. With the APx515 connected, you may be asked to update the instrument firmware during the first launch of the measurement software. APx500 will start, and in a short time you will be presented with the opening screen. Refer to the APx500 User's Manual for more information about making measurements.

The APx500 User's Manual is available as a PDF on the APx500 Application Disc and online at ap.com; a hard-copy version can be ordered from Audio Precision or your local distributor.

Connecting your instrument to the electrical mains supply

The APx515 instrument must be connected to a 50–60 Hz alternating current (ac) electrical mains supply, maximum voltage 250 Vrms.

The instrument has been configured at the factory for the expected voltage at its intended destination, as ordered. The voltage setting and fusing arrangement will normally be correct unless the instrument has been transported into another area. The power entry module has a strip of indicator tape showing its mains voltage setting. This tape must be removed before use.

You **MUST** be sure that the APx515 instrument mains power configuration is correct for the electrical mains power supplied in your area. If you are not sure, do not plug the instrument into the mains power. Follow the instructions below to check or change the instrument mains supply voltage selection.

The mains power supply is applied to your APx515 instrument through the power entry module located on the rear panel. Before connecting the power cord, confirm that the input voltage selection and fusing arrangement in the power entry module are correct for your mains power supply.

Figure 2. Detail, power entry module on APx515 instrument rear panel. The mains power switch is to the left.

Checking the mains supply voltage configuration

The white plastic voltage indicator pin protrudes through one of the four labeled holes in the module cover to indicate the selected input voltage. Figure 2 shows the pin in the second position, indicating 120 V. Check to see that the indicated voltage matches your mains supply voltage. If it does not, change the mains supply voltage configuration as described below.

Opening the power entry module

Unplug the power cord from the instrument before changing fuses or performing any other operations described in this section.

Figure 3. Power entry module door and fuse block.

- Remove the mains power supply cord from the power cord connector.
- Locate the slot in the module cover door hinge. The hinge is a the left side of the cover door, and the slot in

the hinge is visible in the power cord connector cavity. Insert a small screwdriver or similar tool in the slot and pry the cover door hinge outward. The cover door will snap out, and then can be pivoted on its hinge for access to the fuse block assembly and voltage selector card.

Changing the Mains Supply Voltage Configuration

- Open the Power Entry Module as described above.
- The voltage selector card is a small circuit board fitted with a white plastic indicator pin, installed in a housing on the right side of the Power Entry Module as shown in Figure 4. Pull the voltage selector card straight out of the housing, using narrow pliers to grab the card. Do not use the indicator pin as a handle.

Figure 4. Changing the mains power supply voltage.

 Orient the selector card so that the desired input voltage is readable at the bottom, shown in Figure 5. Then move the indicator pin to point UP, opposite the indicated voltage. Seat the pin assembly in the notch on the board edge.

- Insert the voltage selector card into the housing with the printed side of the card facing toward the mains power connector. The card edge indicating the desired voltage should enter the housing first.
- Confirm that the correct fuse or fuse combination is installed for the intended input voltage (refer to the fuse ratings marked on the instrument rear panel). If necessary, change the fuse type as described in the following section.

Figure 5. Voltage card selector orientation.

- Close the module the cover door and verify that the indicator pin shows the desired voltage.
- Once you have verified that the line voltage selection is correct, connect the power cord from a mains power outlet to the power cord connector on the instrument rear panel.

Fuse information

The power entry module accommodates two fusing arrangements, as illustrated in Figure 6.

100/120 VAC operation

The 100/120 VAC fusing arrangement uses a single type 3AG (0.25° x 1.25") slo-blo fuse. Audio Precision recommends only the following replacement fuse:

• 1 each Littelfuse 313 Series, 800 mA 3AG 250 V sloblo glass fuse.

230/240 VAC operation

The 230/240 VAC fusing arrangement uses two 5 x 20 mm IEC-approved type T fuses. Audio Precision recommends only the following replacement fuses:

- 2 each Littelfuse 213 Series, 400 mA 250 V 5 x 20 mm Time Lag (slo-blo) glass fuses or
- 2 each Littelfuse 218 Series, 400 mA 250 V 5 x 20 mm Time Lag (slo-blo) glass fuses.

Refer to the label on the instrument rear panel for fuse current ratings.

Changing the fusing arrangement

Figure 6. Fuse block orientation for 100/120 VAC and 230/240 VAC operation.

To replace a fuse or change the fusing arrangement, proceed as follows:

• Remove the mains power cord from the power cord connector and open the Power Entry Module as described above.

- Using narrow pliers, pull the fuse assembly out of the housing.
- Change or add the correct fuses as necessary, referring to Figure 6. Refer to the instrument rear panel for the correct fuse electrical current rating.
- Insert the fuse assembly in the housing, with the side of the assembly that carries the fuse(s) for your desired fusing arrangement facing into the housing. Press the fuse assembly firmly into the housing.
- Confirm that the line voltage selection is correct for your mains voltage and your fusing arrangement.

Once you have verified that the line voltage selection is correct, connect the power cord from a mains power outlet to the power cord connector on the instrument rear panel.

Installation (Fr)

Logiciel

Tous les systèmes APx utilisent le même logiciel de mesure lauréat, soit APx500.

Analyseurs APx « B Series »

Tous les analyseurs livrés à compter de la fin de décembre 2018 seront dotés d'un processeur intégré et de dispositions de sécurité améliorées. Ces analyseurs portent la désignation « B Series » et suivent la nomenclature « B Series ». Les analyseurs APx « B Series » n'exigent pas de dispositif APx KeyBox (voir ci-dessous), mais peuvent nécessiter des codes d'autorisation afin d'activer le logiciel ou les options de logiciel APx500.

Dispositif APx KeyBox

Si vous utilisez la version 4.6 ou une version plus récente du logiciel APx500 avec un analyseur APx antérieur (pas « B Series »), vous devez installer un dispositif APx Key-Box authentifié au connecteur Software Options sur le panneau arrière de l'analyseur.

Le dispositif APx KeyBox doit être programmé avec le numéro de série de votre analyseur à l'usine d'Audio Precision et ne peut être utilisé avec aucun autre analyseur APx. Des codes d'autorisation afin d'activer le logiciel ou les options de logiciel APx500 peuvent être requis.

Veuillez noter que sans l'installation d'un dispositif APx KeyBox correctement authentifié, le logiciel APx500 version 4.6 ou plus récente ne fonctionnera qu'en mode de démonstration. Si vous avez besoin d'un dispositif Key-Box, trouvez le numéro de série de votre analyseur et allez à https://ap.com/get-keybox/ afin de remplir le formulaire de commande. Le dispositif APx KeyBox est fourni sans frais. Le numéro de série de l'analyseur se trouve sur l'étiquette de configuration à l'arrière de l'analyseur et sur l'étiquette d'étalonnage sur le bord avant du panneau supérieur.

Exigences de système pour l'ordinateur personnel (PC)

Le logiciel de mesure APx500 peut être très exigeant pour l'ordinateur personnel (PC) qui l'exécute.

Demandes de mesure modérées

Les demandes de mesures modérées (bandes passantes de mesure de moins de 90 kHz, nombre de canaux de 2 ou 1) fonctionneront adéquatement avec un PC détenant ces caractéristiques minimales :

- Système d'exploitation : Microsoft Windows 10 (64 bit), Windows 8 (64 bit) ou Windows 7 (64 bit).
- Un processeur multicœur (au moins double cœur) tournant à une vitesse d'horloge d'au moins 2 GHz. La plupart des processeurs actuels Intel et AMD respectent ces exigences.

Remarque : le processeur Intel Atom ne respecte pas nos spécifications minimales.

- Au moins 2 Go de mémoire vive.
- Au moins 300 Mo d'espace libre sur le disque dur.
- Un lecteur optique de CD-ROM.
- Un port USB 2.0; deux ports requis dans le cas de l'utilisation du DCX-127 ou du commutateur optionnel.
- Un moniteur couleur et une carte vidéo avec qualité VGA ou supérieure. Une résolution vidéo de 1024 x 768 ou supérieure est recommandée.

Les demandes de mesures de l'appareil APx515 respectent habituellement cette plage modérée.

Pour en savoir plus à ce sujet, consultez le document courant APx PC Minimum System Solutions (solutions de système minimales pour ordinateur personnel pour APx) sur notre site web, à l'adresse www.ap.com. Ces informations vous aideront à déterminer si un ordinateur personnel, en particulier, convient à l'utilisation d'un appareil APx.

Installation

Pour installer le logiciel de mesure, insérez le CD-ROM APx500 dans le lecteur optique de l'ordinateur et suivez les instructions dans la fenêtre de dialogue du logiciel d'installation. Si vous n'avez pas de disque d'application APx500, vous pouvez le télécharger à partir du site web d'Audio Precision, à l'adresse ap.com.

REMARQUE : Vous devez détenir les droits d'administrateur local pour installer le logiciel APx500. Dans le panneau de configuration (Control Panel) de Windows, consultez les comptes d'utilisateur (User Accounts) ou consultez votre administrateur de réseau.

Exécuter le logiciel sans brancher l'instrument

REMARQUE : Vous devez détenir des droits d'utilisateur standard ou des droits d'administrateur pour utiliser le logiciel APx500. Les utilisateurs invités ne sont pas pris en charge. Vous pouvez exécuter le logiciel APx500 sans brancher l'instrument. Lorsqu'aucun appareil n'est détecté, APx500 vous présente la fenêtre de dialogue suivante :

🙆 Waiti	🐼 Waiting for Hardware									
	No hardware detected. Check that the instrument is connected and powered on. Select Demo Mode to run without hardware.									
	Instrument Type:	APx555 •	Demo Mode							
			Cancel							

Sélectionner le « Demo Mode » (mode démo). APx500 sera exécuté en mode démo, ce qui vous permet d'explorer la surface d'utilisateur, mais pas de prendre des mesures. Les données d'entrée présentées en mode démo sont de fausses données, destinées uniquement à des fins de présentation.

À partir du menu Instrument Type (type d'instrument), sélectionnez un instrument à simuler en mode démo.

Exécuter le logiciel avec l'instrument branché

REMARQUE : Vous devez détenir des droits d'utilisateur standard ou des droits d'administrateur pour utiliser le logiciel APx500. Les utilisateurs invités ne sont pas pris en charge.

Brancher l'instrument à votre ordinateur personnel

Avant de brancher votre instrument APx à votre ordinateur, installez le logiciel de mesure APx500 comme décrit plus haut. Brancher l'instrument avant d'installer le logiciel peut entraîner la sélection du mauvais pilote USB pour l'instrument.

Sélection de pilote USB

Le logiciel de mesure communique avec l'instrument à l'aide d'une interconnexion USB 2.0. Une fois l'installa-

tion du logiciel réussie, branchez une extrémité du câble USB à un port USB 2.0 de l'ordinateur, et l'autre extrémité au port PC INTERFACE situé à l'arrière de l'instrument. Nous vous recommandons fortement d'utiliser le câble USB fourni avec votre instrument (numéro de commande AP CAB-APSI). Nous avons testé d'autres câbles USB dont le fonctionnement est médiocre.

REMARQUE : Certains ordinateurs sont équipés de ports USB optionnels à l'avant, ou sur des supports de prolongation à l'arrière. Dans bien des cas, ces ports pratiques compromettent la performance étant donné la longueur de câble supplémentaire installée dans l'ordinateur. Nous vous recommandons d'utiliser les ports USB directement branchés à la carte mère de l'ordinateur, soit habituellement ceux qui sont placés à l'arrière de l'ordinateur.

Branchez le cordon d'alimentation électrique de l'instrument à celui-ci et à une source d'alimentation électrique c.a. Voir « Setting up the hardware » (configurer l'appareil) cidessous pour obtenir de plus amples renseignements sur les raccordements au secteur.

Allumez l'instrument en basculant le bouton d'alimentation en position sous tension (|). Le commutateur d'alimentation principal est situé dans le module d'entrée d'alimentation, à l'arrière de l'instrument.

Microsoft Windows détectera la présence de l'instrument branché au port USB et lancera le logiciel Hardware Update Wizard qui recherchera le bon pilote logiciel à installer. Sélectionner « Install the software automatically » (installation automatique du logiciel). Windows trouvera le logiciel pilote Audio Precision installé avec APx500 et branché à l'instrument. Lancez APx500 en cliquant deux fois sur le raccourci. Une fois l'instrument branché, on pourrait vous demander de mettre à jour le micrologiciel de l'instrument lors de la première exécution du logiciel de mesure. APx500 démarrera et, peu de temps après, affichera l'écran d'accueil. Consultez le manuel de l'utilisateur du logiciel APx500 pour de plus amples renseignements à propos des prises de mesures.

Le manuel de l'utilisateur du logiciel APx500 est disponible en format PDF sur le disque de l'application APx500 et en ligne à l'adresse ap.com; il est possible de commander un exemplaire imprimé auprès d'Audio Precision ou de votre distributeur local.

Configurer l'appareil

Branchement de votre instrument à l'alimentation secteur

L'instrument APx doit être branché à une alimentation secteur (c.a.) de 50–60 Hz, et à une tension maximale de 250 V RMS.

L'instrument a été configuré en usine pour la tension attendue à sa destination prévue, tel que précisé dans la commande. Le réglage de tension et l'agencement des fusibles devraient être appropriés, à moins que l'instrument soit transporté dans une autre région. Le module d'entrée d'alimentation est doté d'un ruban indicateur qui précise le réglage de tension secteur. Ce ruban doit être enlevé avant l'utilisation.

Vous DEVEZ vous assurer que la configuration d'alimentation secteur de l'instrument est appropriée en fonction de l'alimentation secteur fournie dans votre région. En cas de doute, ne branchez pas l'instrument à l'alimentation secteur. Suivez les instructions ci-dessous pour vérifier ou modifier la tension d'alimentation secteur.

L'alimentation secteur est appliquée à votre instrument APx par l'entremise du module d'entrée d'alimentation situé sur le panneau arrière. Avant de brancher le cordon d'alimentation, confirmez que la tension d'entrée et l'arrangement des fusibles du module d'entrée d'alimentation conviennent à votre alimentation secteur.

Figure 2. Détail du module d'entrée d'alimentation sur le panneau arrière de l'instrument APx. Le commutateur d'alimentation secteur est situé à gauche.

Vérifier la configuration de la tension d'alimentation secteur

La cheville indicatrice de tension en plastique blanc est en saillie de l'un des quatre orifices étiquetés sur le couvercle du module, indiquant la tension d'entrée sélectionnée. La figure 2 montre la cheville dans la deuxième position, indiquant 120 volts. Vérifiez si la tension indiquée correspond à la tension d'alimentation secteur de votre région. Dans le cas contraire, modifiez la configuration de la tension secteur comme décrit ci-dessous.

Ouvrir le module d'entrée d'alimentation

Débranchez le cordon d'alimentation de l'instrument avant de changer des fusibles ou d'effectuer toute autre opération décrite dans cette section.

Pour ouvrir le module d'entrée d'alimentation, consultez la figure 3 et procédez comme suit :

Figure 3. Couvercle du module d'entrée d'alimentation et bloc de fusibles.

- Retirez le cordon d'alimentation secteur du connecteur d'alimentation.
- Localisez la fente dans la charnière du couvercle du module. La charnière est du côté gauche du couvercle, et la fente dans la charnière est visible à partir de la cavité du connecteur de cordon d'alimentation. Insérez un petit tournevis ou un outil semblable dans la fente et

écartez le couvercle vers l'extérieur. Le couvercle s'enlèvera et pourra ensuite être pivoté sur sa charnière pour donner accès au bloc de fusibles et à la carte de sélection de tension.

Changer la configuration de la tension d'alimentation secteur

- Ouvrez le module d'entrée d'alimentation, comme décrit ci-dessus.
- La carte de sélection de tension est un petit circuit imprimé équipé d'une cheville indicatrice en plastique blanc, installée dans un boîtier situé à la droite du module d'entrée d'alimentation, comme illustré à la figure 4. Tirez la carte de sélection de tension hors du boîtier à l'aide de fines pinces. N'utilisez pas la cheville indicatrice comme prise.

Figure 4. Modifier la tension d'alimentation secteur.

 Orientez la carte de sélection pour pouvoir lire la tension d'entrée désirée, dans le bas, comme illustré à la figure 5. Ensuite, déplacez la cheville indicatrice pour qu'elle pointe vers le HAUT, à l'opposé de la tension indiquée. Insérez la cheville dans l'encoche située sur le bord du circuit.

- Insérez la carte de sélection de tension dans le boîtier, avec le côté imprimé de la carte faisant face au connecteur d'alimentation secteur. Le bord de la carte indiquant la tension désirée devrait être inséré en premier dans le boîtier.
- Confirmez que le bon fusible ou la bonne combinaison de fusibles sont installés en fonction de la tension d'entrée prévue (consultez les tensions nominales des fusibles inscrites sur le panneau arrière de l'instrument). Au besoin, changez le type de fusible comme décrit dans la section suivante.

Figure 5. Orientation de la carte de sélection de tension.

- Fermez le couvercle du module et vérifiez si la cheville indicatrice montre la tension désirée.
- Une fois que vous avez vérifié que la sélection de tension est correcte, branchez le cordon d'alimentation d'une prise secteur au connecteur de cordon d'alimentation, sur le panneau arrière de l'instrument.

Informations sur les fusibles

Le module d'entrée d'alimentation convient à deux arrangements de fusibles, comme illustré à la figure 6.

Fonctionnement à 100/120 V c.a.

L'arrangement des fusibles pour le fonctionnement à 100/ 120 V c.a. utilise un seul type de fusible 3AG (0,25 po x 1,25 po) à action retardée. Audio Precision recommande uniquement le fusible de rechange suivant :

• 1 fusible de verre à action retardée Littelfuse série 313, 800 mA 3AG 250 V.

Fonctionnement à 230/240 V c.a.

L'arrangement des fusibles pour le fonctionnement à 230/ 240 V c.a. utilise deux fusibles de type T de 5 x 20 mm approuvés par la CEI. Audio Precision recommande uniquement les fusibles de rechange suivants :

• 2 fusibles de verre à action retardée Littelfuse 213 Series, 400 mA 250 V, 5 x 20 mm

ou

• 2 fusibles de verre à action retardée Littelfuse série 218, 400 mA 250 V, 5 x 20 mm.

Consultez l'étiquette située sur le panneau arrière de l'instrument pour connaître les tensions nominales de courant des fusibles.

Modifier l'arrangement des fusibles

Pour remplacer un fusible ou pour modifier l'arrangement des fusibles, procédez comme suit :

- Retirez le cordon d'alimentation secteur du connecteur de cordon d'alimentation et ouvrez le module d'entrée d'alimentation comme décrit ci-dessus.
- À l'aide de pinces étroites, tirez la cartouche de fusibles hors du boîtier.
- Remplacez des fusibles ou ajoutez les bons fusibles, au besoin, en consultant la figure 6. Consultez l'étiquette située sur le panneau arrière de l'instrument pour connaître les tensions nominales de courant des fusibles.
- Insérez la cartouche de fusibles dans le boîtier, avec le côté de la cartouche contenant le(s) fusible(s) selon votre arrangement désiré faisant face au boîtier. Insérez fermement la cartouche de fusibles dans le boîtier.
- Confirmez que la sélection de tension secteur est correcte en fonction de la tension secteur de votre région et de votre arrangement de fusibles.

Une fois que vous avez vérifié que la sélection de tension est correcte, branchez le cordon d'alimentation d'une prise secteur au connecteur du cordon d'alimentation, sur le panneau arrière de l'instrument. Installation (Fr)

Instalación (Sp)

Software

Todos los sistemas APx utilizan el mismo software laureado, APx500.

Analizadores APx "B Series"

Todos los analizadores enviados a fines de diciembre de 2018 (o posteriormente) tienen un nuevo procesador integrado y provisiones de seguridad mejoradas. Estos analizadores se designaron como "B Series" y llevan la nomenclatura "B Series". Los analizadores APx "B Series" no requieren el APx KeyBox (ver más abajo), pero pueden requerir códigos de autorización para habilitar el software APx500 o las opciones de software.

El APx KeyBox

Si está usando el software APx500 versión 4.6 o posterior con un analizador APx anterior (que no sea "B Series"),

debe acoplar un APx KeyBox autenticado al conector "Software Options" en el panel trasero del analizador.

El APx KeyBox debe ser programado con el número de serie de su analizador en la fábrica de Audio Precision, y no puede ser usado con ningún otro Analizador APx. Puede requerir códigos de autorización para habilitar el software APx500 o las opciones de software.

Tenga en cuenta que sin la APx KeyBox debidamente autenticada acoplada, el APx500 versión 4.6 o posterior solo correrá en modo de demostración. Si necesita una Key-Box, localice el número de serie del analizador y vaya a https://ap.com/get-keybox/ para completar el formulario de orden. La APx KeyBox se proporciona sin cargo, de forma gratuita.

Los números de serie del analizador se localizan en la etiqueta de configuración en el panel trasero del analizador, y en la etiqueta de calibración en el borde delantero del panel superior.

Requisitos de sistema de la PC

El software APx500 para medición puede ser muy exigente de las capacidades de la computadora personal (PC) que opera el software APx.

Demandas de medición moderadas

Las demandas de medición moderadas (anchos de banda de medición de menos de 90 kHz, conteos de canales de 2 o de 1) se ejecutarán adecuadamente usando una PC con las siguientes especificaciones mínimas:

- Sistema operativo: Microsoft Windows 10 (64 bit), Windows 8 (64 bit), o Windows 7 (64 bit).
- Un procesador de núcleo múltiple (por lo menos núcleo doble) operando a una velocidad de reloj de por lo menos 2 GHz. La mayoría de los procesadores actuales de Intel y AMD cumplen con estos requisitos.

Nota: el procesador Intel Atom no cumple con esta especificación mínima.

- Por lo menos 2 GB de RAM.
- Por lo menos 300 MB de espacio libre en disco duro.
- Una unidad lectora óptica de CD ROM.
- Un puerto USB 2.0; se requieren dos para usar un interruptor opcional o un DCX-127.
- Un monitor a color y una tarjeta de vídeo con al menos capacidades VGA. Se recomienda una resolución de vídeo de 1024 x 768 o superior.

Las demandas de medición del APx515 caen típicamente dentro de este rango moderado.

Para obtener más información, consulte el documento actualizado Soluciones Mínimas del Sistema APx para PC [APx PC Minimum System Solutions] visite nuestro sitio web en www.ap.com. Esta información le ayudará a determinar si una PC específica es adecuada para usarse con APx.

Instalación

Para instalar el software de medición, inserte el CD-ROM del APx500 dentro de la unidad óptica de la PC y siga las instrucciones en el diálogo de instalación. Si usted no tiene el disco de la aplicación disco de aplicación del APx500 [APx500 application disc], puede descargar APx500 del sitio web de Audio Precision en www.ap.com.

NOTA: Usted debe tener derechos de administrador local para instalar el software APx500. Ingrese a Cuentas de usuarios en el Panel de Control de Windows, o revise con su administrador de red.

Operación del software sin el hardware del instrumento conectado

NOTA: Usted debe tener derechos estándar de usuario o de administrador para operar el software APx500. No se permiten usuarios invitados.

Usted puede iniciar el software APx500 sin tener conectado el hardware del instrumento. Cuando no se detecta el hardware, el APx500 le mostrará el siguiente cuadro de diálogo:

🙆 Waiti	ing for Hardware		×
	No hardware deter connected and po without hardware.	cted. Check that the i wered on. Select Den	instrument is no Mode to run
	Instrument Type:	APx555 🔹	Demo Mode
			Cancel

Seleccione "Demo Mode" [Modo de demostración]. El APx500 funcionará en modo de demostración, lo que le permite explorar la interfaz de usuario pero no habilita ninguna función de medición. Los datos de entrada que se muestran en el Demo Mode [Modo de demostración] son falsos, se generan solamente para fines de visualización.

Desde el menú de Instrument Type [Tipo de instrumento], seleccione un instrumento a ser emulado en el Demo Mode [Modo de demostración].

Operación del software con el hardware del instrumento conectado

NOTA: Usted debe tener derechos estándar de usuario o de administrador para operar el software APx500. No se permiten usuarios invitados.

Conexión del instrumento a su PC

Antes de conectar su instrumento APx a su PC, instale el software de medición APx500 tal como se describió anteriormente. El conectar el instrumento antes de instalar el software puede resultar en que Windows seleccione un controlador de USB incorrecto para el instrumento.

Selección del controlador del USB

El software de medición se comunica con el instrumento utilizando una interconexión USB 2.0. Una vez que el software se haya instalado correctamente, conecte un extremo del cable USB a un puerto USB 2.0 en la PC, y el otro extremo al puerto de PC INTERFACE [INTERFAZ de la PC] en la parte posterior del instrumento. Recomendamos enfáticamente que use el cable USB incluido con su instrumento (AP número de orden CAB-APSI). Hemos probado otros cables USB con mal funcionamiento.

Nota: Algunas PC tienen puertos USB opcionales al frente de la PC, o en soportes de extensión en la parte posterior. En varios casos, estos puertos de conveniencia han afectado el rendimiento debido a la longitud adicional del cable dentro de la PC. Recomendamos usar estos puertos USB directamente conectados a la tarjeta madre de la PC, típicamente en la parte posterior de la PC.

Conecte al instrumento el cable de suministro de voltaje y a una red eléctrica de CA. Consulte "Setting up hardware" [Configuración del hardware] para obtener más información acerca de las conexiones a la red eléctrica.

Encienda el instrumento desplazando el interruptor de suministro de voltaje a ENCENDIDO(|). El interruptor de suministro de voltaje se encuentra en el módulo de entrada de energía en la parte trasera del instrumento.

Microsoft Windows detectará la presencia del instrumento en el puerto USB y abrirá el Hardware Update Wizard [Asistente de actualización de hardware] para buscar el controlador de software correcto. Seleccione "Install the software automatically" [Instalar el software automáticamente]. Windows encontrará el software del controlador de Audio Precision instalado con APx500 y se conectará al instrumento.

Ejecute APx500 haciendo doble clic en el acceso directo instalado. Con el instrumento ya conectado, se le podría pedir actualizar el firmware del instrumento durante la primera ejecución del software de medición. APx500 iniciará, y en un tiempo breve se mostrará la pantalla de inicio. Consulte el Manual del usuario del APx500 para obtener más información acerca de hacer las mediciones.

El Manual del usuario del APx500 está disponible como PDF en el Disco de Aplicación del APx500 y en línea en ap.com, además puede solicitar una versión en papel de Audio Precision o de su distribuidor local.

Configuración del hardware

Conexión de su instrumento a la red de energía eléctrica El instrumento APx debe conectarse a una fuente de alimentación de corriente alterna (AC) a 50–60 Hz, con un voltaje máximo de 250 Vrms.

El instrumento se ha configurado de fábrica para el voltaje esperado en su supuesto destino, tal como se adquirió. La configuración de voltaje y el arreglo de fusibles serán normalmente correctos a menos que el instrumento se haya transportado hacia otra área. El módulo de entrada de energía tiene una franja de cinta indicadora mostrando la configuración de voltaje de su fuente de alimentación. Esta cinta debe removerse antes de usarse.

Usted DEBE asegurarse que la configuración del voltaje de la fuente de alimentación del instrumento APx sea la correcta para los voltajes de alimentación suministrados en su área. Si no está seguro, no conecte el instrumento en la fuente de alimentación. Siga las instrucciones a continuación para verificar o cambiar la selec-

ción de voltaje de la fuente de alimentación del instrumento.

La fuente de alimentación de voltaje se aplica a su instrumento APx a través del módulo de entrada de energía localizado en el tablero trasero. Antes de conectar el cable de suministro, confirme que la selección del voltaje de entrada y el arreglo de fusibles en el módulo de entrada de energía sean los correctos para su fuente de suministro de voltaje.

Figura 2. Detalle, módulo de entrada de energía en el panel posterior del instrumento APx. El interruptor de potencia está a la izquierda.

Revisión de la configuración del voltaje de la fuente de alimentación

El pasador de color blanco de plástico del indicador de voltaje resalta a través de uno de los cuatro orificios etiquetados en la cubierta del módulo, para indicar el voltaje de entrada seleccionado. La figura 2 muestra el pasador en la segunda posición, indicando 120 V. Revise para ver que el voltaje indicado corresponda con su voltaje de la fuente de alimentación. De no ser así, cambie la configuración del voltaje de la fuente de suministro tal como se describe a continuación.

Apertura del módulo de entrada de energía

Desconecte el cable de alimentación del instrumento antes de cambiar los fusibles o efectuar cualquier otra operación descrita en esta sección.

Para abrir el módulo de entrada de energía, consulte la Figura 3 y proceda de la siguiente manera:

Figura 3. Puerta del módulo de entrada de energía y bloque de fusibles.

- Extraiga el cable de alimentación de voltaje del conector de cable de alimentación.
- Localice la ranura en la bisagra de la puerta de la cubierta del módulo. La bisagra se encuentra a la izquierda de la puerta de la cubierta, y la ranura en la bisagra es visible en la cavidad del conector del cable de alimentación. Inserte un desarmador pequeño o una herra-

mienta similar en la ranura y empuje la bisagra de la puerta de la cubierta. La puerta de la cubierta se zafará, y luego podrá pivotarse sobre su bisagra para acceso al conjunto de ensamble de bloque y tarjeta selectora de voltaje.

Cambio de la configuración del voltaje de la fuente de alimentación

- Abra el módulo de la entrada de energía tal como se describe anteriormente.
- La tarjeta selectora de voltaje es una tarjeta de circuito pequeña equipada con un pasador indicador blanco de plástico, instalado en el lado derecho del módulo de entrada de energía, tal como se muestra en la Figura 4. Tire de la tarjeta selectora de voltaje recto hacia fuera de la carcasa, usando pinzas de punta para sujetar la tarjeta. No utilice el pasador indicador como un asa.

Figura 4. Cambio del voltaje de la fuente principal de alimentación.

- Oriente la tarjeta selectora para que el voltaje deseado en la entrada sea legible en la parte inferior, como se muestra en la Figura 5. Luego mueva el pasador indicador para señalar hacia ARRIBA, opuesto al voltaje indicado. Asiente el ensamble del pasador en la muesca en el borde del tablero.
- Inserte la tarjeta selectora de voltaje dentro de la carcasa con el lado impreso de la tarjeta hacia el conector de la fuente de suministro de alimentación. El borde de la tarjeta que indica el voltaje deseado debería entrar primero en la carcasa.
- Confirme que esté instalado el fusible o combinación correcta de fusibles para el voltaje de entrada pretendido (consulte las capacidades de los fusibles marcadas en el panel posterior del instrumento). De ser necesario, cambie el tipo de fusible tal como se describe en la siguiente sección.

Figura 5. Orientación del selector de tarjeta de voltaje.

- Cierre la puerta de la cubierta del módulo y verifique que la pata del indicador muestre el voltaje deseado.
- Una vez que haya verificado que la selección del voltaje de la línea es correcto, conecte el cable de suministro desde una toma de fuente de alimentación al

conector del cable de suministro en el tablero posterior del instrumento.

Información de los fusibles

El módulo de entrada de energía puede recibir dos arreglos de fusibles, tal como se ilustra en la Figura 6.

Operación a 100/120 VCA

El arreglo de fusibles para 100/120 VCA usa un solo tipo de fusible de fundido lento 3AG (0.25" x 1.25"). Audio Precision solamente recomienda el siguiente fusible de reemplazo:

• 1 fusible tipo Littelfuse 313 Series, 800 mA 3AG 250 V de fundido lento.

Operación a 230/240 VCA

El arreglo de fusible 230/240 VCA usa dos fusibles 5x20 mm tipo RT aprobados por IEC. Audio Precision solamente recomienda los siguientes fusibles de reemplazo:

- 2 fusibles de vidrio Littelfuse 213 Series, 400 mA 250 V 5x20 mm con demora de tiempo (de fundido lento)
- 0
- 2 fusibles de vidrio Littelfuse 218 Series, 400 mA 250 V 5x20 mm con demora de tiempo (de fundido lento).

Consulte la etiqueta en el panel posterior del instrumento para las capacidades de corriente de los fusibles.

Cambio del arreglo de fusibles

Figura 6. Orientación del bloque de fusibles para operación con 100/120 VCA y con 230/240 VCA.

Para reemplazar un fusible o cambiar el arreglo de fusibles, proceda de la siguiente manera:

- Extraiga el cable de alimentación desde el conector de cable de alimentación y abra el módulo de entrada de energía tal como se describió anteriormente.
- Use unas pinzas de punta para sacar el ensamble de fusibles de la carcasa.
- Cambie o agregue los fusibles correctos según sea necesario, consultando la Figura 6. Consulte el panel posterior del instrumento para las capacidades correctas de corriente eléctrica de los fusibles.
- Inserte el ensamble de fusibles en la carcasa, con el lado del ensamble que contiene los fusibles para la configuración de fusibles que desea, orientados hacia la carcasa. Presione firmemente el ensamble de fusibles al interior de la carcasa.
- Confirme que la selección de la línea de voltaje sea la correcta para su voltaje de suministro y su arreglo de fusibles.

Una vez que haya verificado que la selección del voltaje de la línea es correcto, conecte el cable de alimentación desde una toma de fuente de alimentación al conector del cable de suministro en el panel posterior del instrumento. Instalación (Sp)

Abbreviations, Terms and Symbols

used in the following specifications

ADC or A/D $\ldots \ldots$. Analog to Digital converter or conversion.
BW	. Bandwidth or Measurement Bandwidth, nominally at -3 dB; a single number
	indicates only the upper limit.
DAC or D/A	. Digital to Analog converter or conversion.
DSP	. Digital Signal Processing or Digital Signal Processor.
DUT	Device Under Test, the device to which the generator or analyzer is connected.
EMC	. Electro-Magnetic Compatibility, usually refers to both emissions (radiated and conducted via AC mains) and susceptibility.
ENBW	. Equivalent Noise Bandwidth, the frequency of an ideal filter having the same rms response to white noise.
FFT	. Fast Fourier Transform, a mathematical process converting a signal in the time domain to the frequency domain.
IMD	. Inter-Modulation Distortion, a measure of non-linearity using a test signal with two or more components.
RMS or rms	. Root Mean Square, an equivalent-power expression of signal amplitude.
SR	. Sample Rate, usually as it applies to the conversion rate of A/D and D/A converters or digital audio formats.
THD	. Total Harmonic Distortion, rms summation of d2 to d9 (may be bandwidth lim- ited), usually derived from an FFT.
THD+N	. Rms measurement of ALL harmonics, spurious signals, and noise within a specified bandwidth.
Typical or Typ	. A characteristic that is not guaranteed, usually due to a practical limitation in testing or metrology.
UI	. Unit Interval, a measure of time is it applies to digital audio formats. 1 UI= $1/(128 \cdot SR)$
[]	. Indicates a specification in an equivalent unit, for example: 0.030 dB [0.35%] or 10.61 Vrms [30.00 Vpp].
\approx	. Indicates an approximate or nominal value, or range of values; not guaranteed.

Specifications APx515 B Series audio analyzer

with APx500 v5.0 or higher measurement software December 2018 NP0020.00035 r000

Characteristic	Specifications	Supplemental Information
ANALOG GENERATOR		
Number of Channels	2, independent amplitude control	
Waveforms	Sine, sine split frequency, sine split phase, sine+DC offset, continuously swept-sine, noise, IMD test signals, multi-tone, wave file playback	
Sine Characteristics		
Frequency Range (Fs)	2 Hz to 80.1 kHz	Setting resolution is typically 45 μ Hz
Frequency Accuracy	±(0.0003% + 100 μHz)	
Amplitude Range	0 to 16.00 Vrms [45.2 Vpp], balanced; 0 to 8.00 Vrms [22.6 Vpp], unbalanced	
Amplitude Accuracy, 1 kHz	±0.05 dB [±0.58%]	
Flatness (1 kHz ref)	<u>.</u>	
Fs = 10 Hz to 20 kHz	±0.010 dB	Typically <0.005 dB.
Fs = 20 kHz to 50 kHz	±0.030 dB	
Fs = 50 kHz to 80 kHz	±0.10 dB	
Residual THD+N ^{1,2}		
Fs = 20 Hz–20 kHz	≤ (–102 dB + 1.4 µV), 20 kHz BW	
Non-Harmonic Content		Typically <-110 dB when Fs ≤75 kHz, increasing to ≈-55 dB at Fs =80 kHz
Phase Offset Range (Split Phase)	–179.999 to +180.000 deg	

С	har	acteristic	Specifications	Supplemental Information
	C	C Offset Range	±12.00 Vdc balanced; ±6.00 Vdc unbalanced	DC offset limits maximum ac signal
	R	esidual DC Offset	≤0.25% of Vrms setting [≤0.09% of Vpp setting] + 100 μV	
	No	ise Characteristics		
	S	hape	White (<5 Hz to 86.4 kHz), Pink (<10 Hz to 86.4 kHz), IEC 60268-1 or BS EN 50332-1	
	A	mplitude Range	0 to 45.2 Vpp, balanced; 0 to 22.6 Vpp, unbalanced	Amplitude calibration is approximate
	IMI) Test Signals (requires	option AML)	
	5	MPTE & MOD		
		Lower Frequency (LF)	40 Hz to 1.00 kHz	LF tone must be $\leq 1/6 \cdot HF$ tone.
		SMPTE Upper Frequency (HF)	2.00 kHz to 60.00 kHz	
		MOD Upper Frequency (HF)	240 Hz to 60.00 kHz	
		Mix Ratio (LF:HF)	10:1, 4:1 or 1:1	
		Amplitude Range	0 to 45.2 Vpp, balanced; 0 to 22.6 Vpp, unbalanced.	
		Amplitude Accuracy	±0.06 dB [±0.70%]	
		Residual IMD ^{1,2,3}	≤0.0025% [-92 dB], 4:1 mix ratio	
	Г	FD & CCIF		
	Ħ	Difference Frequency (Fdiff)	80 Hz to 2.00 kHz	$F_{mean} = (F1 + F2)/2.$
		Mean Frequency (Fmean)	250 Hz to 60.00 kHz	F_{diff} = F2 - F1 F_{mean} must be ≥6 • F_{diff}
		Amplitude Range	0 to 45.2 Vpp, balanced; 0 to 22.6 Vpp, unbalanced.	
		Amplitude Accuracy	±0.06 dB [±0.70%]	
		Residual IMD ^{1,2,3}	≤ 0.0010% [–100 dB]	
F	Mu	Ititone, Wave File Playb	ack (requires option HST)	
	S	ample Rate Range (SR)	8 kS/s to 108 kS/s, and 175 kS/s to 192 kS/s	Operation from 109 kS/s to 175 kS/s is possible, but with degraded flatness
	N	laximum File Size	32 MSample.	
	A	mplitude Range	0 to 45.2 Vpp, balanced; 0 to 22.6 Vpp, unbalanced.	.Wav file must peak at digital full scale to obtain selected amplitude

Specifications

Supplemental Information

	Flatness (1 kHz ref)		
	SR = 175 kS/s to 192 kS/sec		Typically <0.012 dB to 20 kHz
	SR = 8 kS/s to 108 kS/s		Typically <0.04 dB to 20 kHz;
			max frequency limited to $\approx 0.45 \cdot SR$
	Spurious Content		Typically <–100 dB
C	Dutput Equalization	Arbitrary 30-pole output filter	
S	Source Resistance (Rs)	•	
	Balanced	Selectable 100 $\Omega \pm 1\%$ or 600 $\Omega \pm 1\%$.	Grounded, symmetrical
	Unbalanced	Selectable 50 Ω ±1.5% or 600 Ω ±1%.	Electronically floating, 0.3 Vpk max; bnc shield to ground \approx 10-17 $\Omega \parallel 22nF$
	Common Mode Test	Same as Balanced selections	
Ν	Max Output Current		Typically >50 mA peak, 50 mA dc
F	Reverse Overload Protection	on	Up to 30 W
C	Dutput Related Crosstalk ¹	\leq (–120 dB + 1 $\mu V)$ to 20 kHz	
AN	IALOG ANALYZER	-	
Ν	Number of Channels	2, independently auto-ranging.	Max ADC sample rate = 192 kS/s
Ν	Maximum Rated Input	125 Vpk, 120 Vdc any input to ground; 0.5 Vpk for unbalanced bnc shields	
l	nput Impedance	1	
	Balanced	100 kΩ ≈230 pF, each side to gnd	
	Unbalanced	100 kΩ ≈230 pF to bnc shield	Electronically floating, 0.5 Vpk max; bnc shield to ground \approx 500 $\Omega \parallel 22nF$
l	nput Termination	Selectable 600 Ω ±1%, 1.5 W max.	Termination automatically opens in the 80 V range.
lı	nput Coupling	Selectable DC or AC	Typically <0.5 μ A bias current with DC coupling, typically <0.03 dB roll-off at 20 Hz with AC coupling
l	nput Ranges	250 mVrms to 80 Vrms, 10 dB steps	Maximum ac signal is ≈88 Vac unbal, 115 Vac bal, in the 80V range

Co	mmon Mode Rejection ⁴		Max common mode signal range:
2	50 mV, 800 mV, 2.5 V ranges	≥ 80 dB, 5 Hz to 5 kHz;	±6 Vpk
		≥ 70 dB, 5 kHz to 20 kHz.	
8	V range	≥ 50 dB, 5 Hz to 20 kHz	±12 Vpk
2	5 V range	≥ 50 dB, 5 Hz to 20 kHz	±60 Vpk
8	0 V range	\geq 45 dB, 5 Hz to 20 kHz	±120 Vpk
Inp	out Related Crosstalk	\leq (–120 dB + 0.3 μ V) to 20 kHz	$R_{\rm s} \le 600 \ \Omega$
Lev	vel (Amplitude) Measure	ment	
R	Range		
	Balanced or bridging input	< 1 µV to 115 Vrms	
	Unbalanced input	< 1 µV to 85 Vrms	
A	ccuracy (1 kHz)	±0.05 dB [±0.60%]	
F	latness (1 kHz ref, DC coupling)	•	
	10 Hz to 20 kHz	±0.010 dB	Typically < 0.005 dB.
	20 kHz to 50 kHz	±0.030 dB	
	50 kHz to 80 kHz	±0.10 dB	
Res	idual Noise (inputs shorted)	\leq 1.4 µVrms, 20 kHz BW	Typically < 8.0 nV/√Hz at 1 kHz
TH	D+N Measurement		
F	undamental Range	5 Hz to > 90 kHz	
N	leasurement Range	0 to 100%	
A	Accuracy	±0.5 dB	
R	Residual THD+N ^{1,2}		
	20 Hz–20 kHz fundamentals	\leq (–102 dB + 1.4 µV), 20 kHz BW	

Specifications

Supplemental Information

Ba	andwidth Limiting Filters		
	High-Pass ⁸		
	DC	DC coupling	
	AC (< 10 Hz)	AC coupling	Response is 2-pole via a combination of analog and digital filters, and is typically –3 dB at 4.1 Hz
	Butterworth	F _{HP} (–3 dB) = 10 Hz to 90 kHz, 4-pole	
	Elliptic	F _{HP} (–0.01 dB) = 10 Hz to 90 kHz; 5-pole; 0.01 dB pass-band ripple; ≤–60 dB stop-band	
	Low-Pass ^{5,8}		
	ADC Passband	No filter is implemented, bandwidth and response are limited by the A/D and sample rate (SR)	–3 dB at ≈ 0.490 • SR, SR ≤ 216 kS/s
	20k (AES17), 40k (AES17)	Special filters conforming with AES17	
	Butterworth	F _{LP} (–3 dB) = 10 Hz to 90 kHz, 8-pole	$ENBW \approx 1.006 \cdot F_{LP}$
	Elliptic	F _{LP} (–0.01 dB) = 10 Hz to 90 kHz, 8-pole; 0.01 dB pass-band ripple; ≤–60 dB stop-band	$ENBW \approx (1.012-1.062) \cdot F_{LP}$ (varies due to warping)
	Weighting	A-wt, B-wt, C-wt, CCIR-1k, CCIR-2k, CCITT, C-message, 50 µs or 75 µs de-emph (with and without A-wt), or None	Weighting filter is cascaded with both high-pass and low-pass filters
In	put Equalization	Arbitrary 30-pole input filter	The EQ operates on any selected ana- lyzer input channels.

Supplemental Information

IN	ID Measurement		
	Test Signal Compatibility		
	SMPTE & MOD	Any combination of 40 Hz–1 kHz (LF) and 240 Hz–60 kHz (HF), mixed in any ratio from 1:1 to 10:1 (LF:HF)	LF tone must be $\leq 1/6 \cdot HF$ tone.
	DFD & CCIF	Any two-tone combination with mean frequency of 250 kHz–60 kHz and a difference frequency of 80 Hz–2.0 kHz	F _{mean} = (F1 + F2)/2. F _{diff} = F2 - F1 F _{mean} must be ≥6 • F _{diff}
	IMD Measured		
	SMPTE	Amplitude modulation of HF tone.	Measurement BW is typ. 40–750 Hz.
	MOD	d2, d3, d2+d3, or d2+d3+d4+d5	Use "d2+d3" for measurements per IEC 60268
	DFD	d2, d3, d2+d3, or d2+d3+d4+d5	Use "d2+d3" for measurements per IEC 60268
	CCIF	d2 only	"CCIF" is an archaic form of DFD that measures only the d2 product. CCIF uses a different 0 dB reference giving readings 2x higher than DFD.
	Measurement Range	0 to 20%	
	Accuracy	±0.5 dB	
	Residual IMD ^{1,2,3}		
	SMPTE & MOD	≤-92 dB [0.0025%], 4:1 mix ratio	
	DFD	≤-100 dB [0.0010%]	
F	requency Measurement		
	Range	5 Hz to 90 kHz	
	Accuracy	±0.0003% [3 ppm]	V_{in} must be ≥ 5 mV.
	Resolution	6 digits	
Ρ	hase Measurement	+	
	Ranges	-90 to +270, ±180, or 0 to 360 deg	
	Accuracy	±0.2 deg, 5 Hz to 5 kHz; ±0.8 deg, 5 kHz to 20 kHz; ±2.0 deg, 20 kHz to 50 kHz	V_{in} must be \geq 5 mV with dc coupling, both channels. Accuracy degrades below 50 Hz with ac coupling.
	Resolution	0.001 deg	

Specifications

-				
	DC \	/oltage Measurement		
	Inp	ut Ranges	0.25 V to 80 V, 10 dB steps	±120 Vdc maximum in 80 V range
	Acc	curacy		
		250 mV and 800 mV ranges	±(0.7% reading + 1 mV)	
	4	2.5 V-80 V ranges	±(0.7% reading + 0.1% range)	
	Noi	rmal Mode Rejection		Typically > 90 dB, 20 Hz to 20 kHz.
D	IGIT	<u>AL I/O</u>		
D	IGIT/	AL OUTPUT RELATED:	I	
	Forn	nats		
	Ele	ctrical, unbalanced	SPDIF-EIAJ per IEC60958, 0.50 Vpp or 1.00 Vpp \pm 10% into 75 Ω	Output R is nominally 75 Ω .
	Ele	ctrical, balanced	AES-EBU per AES3-1992, 5.00 Vpp \pm 10% into 110 Ω	Output R is nominally 110 Ω .
	Opt	tical	Toslink®	
	Sam	ple Rate (SR) Range		
	Ele	ctrical	27 kS/s to 200 kS/s	Usable over the extended range of 16 kS/s to 216 kS/s with degraded waveform
	Opt	tical	27 kS/s to 108 kS/s	
	Sam	ple Rate (SR) Accuracy	±0.0003% [3 ppm]	
	Chai	nnel Status Bits	Full implementation per IEC-60958	Automatically set or manual override, hex or plain English
	User	Bits and Validity Flag	Fully settable	Hex
	Residual Jitter ^{1,6}		P	
	Ele	ctrical		Typically < 1.5 ns
	Opt	tical		Typically < 2.5 ns, SR \leq 96 kS/s
_				

onaraoteristic			opeemeations	oupplemental information
E	ME	BEDDED OUTPUT SIGNAL	L RELATED:	
	W	aveforms	Sine, sine split frequency, sine split phase, sine+DC offset, continuously swept-sine, square-wave, noise, IMD signals, multi-tone, constant value, walking ones/zeros, bittest random, wave file playback	8–24 bit word width, triangular PDF dither.
	Si	ne Characteristics		
		Frequency Range	5 Hz to 0.499 • SR	
		Flatness ¹		Typically <0.001 dB
		Offset Range	To maximum digital code [±1D]	Offset limits maximum ac signal
		Harmonics & Spurious ^{1,6}		Typically <–140 dBFS
	Sc	uare Characteristics		
		Frequency Range (Fq)	10 Hz to SR / 6	Only specific values are allowed: Fq = SR / N where N is an even integer ≥6
		Even Harmonic, Spurious Content		Typically <-140 dBFS
	No	bise Characteristics		
		Shape	White (<5 Hz to 0.499 • SR), Pink (<10 Hz to 0.45 • SR), IEC 60268-1 or BS EN 50332-1	
	IM	D Test Signals	1	
		<u>SMPTE & MOD</u>		
		Lower Frequency (LF)	40 Hz to 1.00 kHz	LF tone must be $\leq 1/6 \cdot$ HF tone.
		SMPTE Upper Frequency (HF)	2 kHz to (0.499 • SR) or 60 kHz, whichever is lower	
		MOD Upper Frequency (HF)	240 Hz to (0.499 • SR) or 60 kHz, whichever is lower	
		Mix Ratio (LF:HF)	10:1, 4:1 or 1:1	
		Residual IMD ^{1,6}		Typically <–140 dBFS

Specifications

Characteristic

Supplemental Information

Specifications

Supplemental Information

	[DFD & CCIF		
		Tone Pair Mean Range	2.5 kHz to (0.499 • SR – F _{mean} / 2) or	$F_{mean} = (F1 + F2)/2.$
			20 kHz, whichever is lower	
		Tone Pair Difference Range	80 Hz to 2.0 kHz	$F_{mean} = (F1+F2)/2, F_{diff} = F2-F1 .$
		-		F_{mean} must be $\geq 6 \cdot F_{diff}$
-		Desidual IMD1.6		Typically ≤ 150 dBES
	Multitone, Wave File Playback			
	5	Sample Rate (SR)	8 kS/s to 216 kS/s	
	ľ	Maximum File Size	32 MSample.	
	F	Flatness (1 kHz ref)		Typically <0.001 dB to 0.499 • SR
	9	Spurious Content		Typically <–140 dB
D	IGI	TAL INPUT RELATED:		
	Fo	rmats		
	E	Electrical, unbalanced	SPDIF-EIAJ per IEC60958, ≤10 Vpp.	Input R is nominally 75 Ω .
	E	Electrical, balanced	AES-EBU per AES3-1992, ≤10 Vpp.	Input R is nominally 110 Ω .
	(Optical	Toslink®	
	Sa	mple Rate Range (SR)		
	E	Electrical	27 kS/s to 216 kS/s	Typically locks down to 16 kS/s
	(Optical	27 kS/s to 108 kS/s	
E	MB	EDDED INPUT SIGNAL F	RELATED:	
	Le	vel (Amplitude) Measure	ment	
	ľ	Measurement Range	< –120 dBFS to +3 dBFS	
	ŀ	Accuracy (1 kHz)		Typically < 0.001 dB
	F	Flatness ¹		Typically <0.001 dB
	Re	sidual Noise ¹		Typically <–140 dBFS
-				

THD+N Measurement		
Fundamental Range	5 Hz to 0.49 • SR or 50 kHz,	Tuning can be set to track measured fre-
	whichever is lower	quency, generator setting or fixed
Measurement Range	0 to 100%	
Accuracy	±0.5 dB	Q=2.6 typically
Residual THD+N ^{1, 7}		Typically <–140 dBFS
Bandwidth Limiting Filters		
High-Pass ⁸		
DC	DC coupling	
AC (< 10 Hz)	AC coupling	–3 dB at 4.1 Hz
Butterworth	F _{HP} (–3 dB) = 10 Hz to 100 kHz, 4-pole	
Elliptic	F_{HP} (-0.01 dB) = 10 Hz to 100 kHz; 5-pole; 0.01 dB pass-band ripple; ≤-60 dB stop-band	
Low-Pass ⁸		
FS/2	No filter is implemented, bandwidth and response are limited by the SR	
Butterworth	F _{LP} (–3 dB) = 10 Hz to 100 kHz, 8-pole	ENBW ≈ 1.006 • F _{LP}
Elliptic	F_{LP} (-0.01 dB) = 10 Hz to 100 kHz, 8-pole; 0.01 dB pass-band ripple; ≤-60 dB stop-band	ENBW ≈ (1.012–1.062) • F _{LP} (varies due to warping)
Weighting	A-wt, B-wt, Ċ-wt, CCIR-1k, CCIR-2k, CCITT, C-message, 50 μs or 75 μs de-emph (with and without A-wt), or None	Weighting filter is cascaded with both high-pass and low-pass bandwidth limiting filters
Input Equalization	Arbitrary 30-pole input filter	The EQ operates on any selected ana- lyzer input channels.

	MD Measurement		
	Test Signal Compatibility		
	SMPTE & MOD	Any combination of 40 Hz–1 kHz (LF) and 240 Hz–60 kHz (HF), mixed in any ratio from 1:1 to 10:1 (LF:HF)	LF tone must be $\leq 1/6 \cdot HF$ tone.
	DFD & CCIF	Any two-tone combination with mean frequency of 250 kHz–60 kHz and a difference frequency of 80 Hz–2.0 kHz	$\begin{array}{l} F_{mean} = (F1 + F2)/2 \\ F_{diff} = F2 - F1 \\ F_{mean} \mbox{ must } be \geq 6 \bullet F_{diff} \end{array}$
	IMD Measured		
	SMPTE	Amplitude modulation of HF tone.	Measurement BW is ≈40–750 Hz.
	MOD	d2, d3, d2+d3, or d2+d3+d4+d5	Use "d2+d3" for measurements per IEC-60268.
	DFD	d2, d3, d2+d3, or d2+d3+d4+d5	Use "d2+d3" for measurements per IEC-60268
	CCIF	d2 only	"CCIF" is an archaic form of DFD that measures only the d2 product. CCIF uses a different 0 dB reference giving readings 2x higher than DFD.
	Measurement Range	0 to 20%	
	Accuracy	±0.5 dB	
	Residual IMD ^{1, 7}		
	SMPTE & MOD		Typically <–140 dBFS
	DFD		Typically <–150 dBFS
I	Frequency Measurement		
	Range	<5 Hz to 0.499 • SR	
	Accuracy	±(0.0003% + 100 μHz)	
	Resolution	6 digits	
	Phase Measurement		
	Ranges	–90 to +270, ±180, or 0 to 360 deg	
	Accuracy ¹		Typically 0.001 deg
	Resolution	0.001 deg	
	1 1		

GENERAL/ENVIRONMENT		
Power Requirements	100, 120, 230 or 240 Vac, 50–60 Hz, with safety ground via approved power cord, 75 VA max.	Typical operating range is 90–110 Vac (100V), 108–132 Vac (120V), 198–242 Vac (230V), or 216–264 Vac (240V).
Temperature Range		
Operating	0° C to +45° C	
Storage	–40° C to +75° C	
Humidity	10 % to 80 %, non-condensing	
Max Operating Altitude	3,000 m [9,840 feet]	
Stabilization Time	20 minutes	Allow up to 1 hour per 10°C if unit has been exposed to a significant change in temperature. Allow 24–48 hours to recover if condensation has occurred.
EMC	Complies with Directive 2004/108/EC, IEC 61326-1:2005, EN 61326-1:2006. Radiated and conducted emissions are within Class B limits of CISPR 11.	Emission and immunity levels are influ- enced by the shielding performance of interface and signal cables attached to the instrument. EMC compliance was demonstrated using Audio Precision cables
Safety	Complies with Directive 2006/95/EC, IEC 61010-1:2001, EN 61010-1:2001, CAN/CSA-C22.2 No. 61010-1-04, and UL Std No. 61010-1 (2nd Edition).	Equipment Class I, Installation Category II, Pollution Degree 2, Measurement Category I
Dimensions (W x H x D)	370 x 86 x 343 mm [14.55 x 3.40 x 13.53 in]	2U rack mount tray available. D is 351 mm [13.56 in] if rear panel option keys are installed
Weight	4.45 kg [9.8 lbs]	

Specifications

Not	tes to Specifications	
1.	System specification including contributions from both generator and analyzer. Generator-only and/or analyzer- only contributions are typically less.	
2.	Generator load must be \geq 600 Ω balanced or \geq 300 Ω unbalanced for specified performance. Generator dc offset must be off or set to \leq 10 mV.	
3.	Analyzer input must be ≥150 mV for specified performance. Analyzer set to measure "d2+d3" IMD products for MOD and DFD modes.	
4.	Valid for the balanced input configuration with dc coupling only. With ac coupling, specified performance is invalid below 50 Hz.	
5.	Maximum low-pass filter frequency is limited by analyzer input bandwidth setting.	
6.	Sample rate (SR) must be \geq 27 kS/s for specified performance. Jitter analyzer set for 700 Hz high-pass response per AES3-1992.	
7.	Digital generator word width must be set to 24 bits for specified performance; shorter word widths may degrade performance.	
8.	Filter response is relative to "no filter" selection; overall system performance will also include analog flatness imperfections. DSP warping may significantly increase roll-off rate and lower ENBW.	

Specifications

Supplemental Information

